On non-normal cyclic subgroups of prime order or order 4 of finite groups
نویسندگان
چکیده
Abstract In this paper, we call a finite group G G an N L M NLM -group ( C NCM -group, respectively) if every non-normal cyclic subgroup of prime order or 4 (prime power order, in is contained maximal . Using the property -groups and -groups, give new necessary sufficient condition for to be solvable T T (normality transitive relation), some conditions supersolvable, classification those groups whose all proper subgroups are -groups.
منابع مشابه
Finite groups with $X$-quasipermutable subgroups of prime power order
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملCyclic Subgroups of Order 4 in Finite 2 - Groups
We determine completely the structure of finite 2-groups which possess exactly six cyclic subgroups of order 4. This is an exceptional case because in a finite 2-group is the number of cyclic subgroups of a given order 2n (n ≥ 2 fixed) divisible by 4 in most cases and this solves a part of a problem stated by Berkovich. In addition, we show that if in a finite 2-group G all cyclic subgroups of ...
متن کاملfinite groups with $x$-quasipermutable subgroups of prime power order
let $h$, $l$ and $x$ be subgroups of a finite group$g$. then $h$ is said to be $x$-permutable with $l$ if for some$xin x$ we have $al^{x}=l^{x}a$. we say that $h$ is emph{$x$-quasipermutable } (emph{$x_{s}$-quasipermutable}, respectively) in $g$ provided $g$ has a subgroup$b$ such that $g=n_{g}(h)b$ and $h$ $x$-permutes with $b$ and with all subgroups (with all sylowsubgroups, respectively) $v$...
متن کاملOn the Number of Prime Order Subgroups of Finite Groups
Let G be a finite group and let δ(G) be the number of prime order subgroups of G. We determine the groups G with the property δ(G) > |G|/2− 1, extending earlier work of C. T. C. Wall, and we use our classification to obtain new results on the generation of near-rings by units of prime order. 2000 Mathematics subject classification: primary 20D06; secondary 20D10, 16Y30.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2021
ISSN: ['2391-5455']
DOI: https://doi.org/10.1515/math-2021-0012